Setting up a Probabilistic Neural Network for Classification of Highway Vehicles
نویسندگان
چکیده
Many neural network methods used for efficient classification of populations work only when the population is globally separable. In situ classification of highway vehicles is one of the problems with globally nonseparable populations. This paper presents a systematic procedure for setting up a probabilistic neural network that can classify the globally nonseparable population of highway vehicles. The method is based on a simple concept that any set of classifiable data can be broken down to subclasses of locally separable data. Hence, if these locally separable data can be identified, then the classification problem can be carried out in two hierarchical steps; step one classifies the data according to the local subclasses, and step two classifies the local subclasses into the global classes. The proposed approach was tested on the problem of classifying highway vehicles according to the US Federal Highway Administration standard, which is normally handled by decision tree methods that use vehicle axle information and a set of IF-THEN rules. By using a sample of 3326 vehicles, the proposed method showed improved classification results with an overall misclassification rate of only 2.9% compared to 9.7% of the decision tree methods. A similar setup can be used with different neural networks such as recurrent neural networks, but they were not tested in this study especially since the focus was for in situ applications where a high learning rate is desired.
منابع مشابه
Highway Vehicle Classification by Probabilistic Neural Networks
The Federal Highway Administration (FHWA) Office of Highway Planning requires states to furnish vehicle classification data as part of the Highway Performance Monitoring Systems (HPMS). To comply with this requirement, most states use the “F-Scheme” to classify vehicles. This scheme classifies vehicles in 13 classes depending on a number of factors, primarily the number of axles and the axle sp...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Computational Intelligence and Applications
دوره 5 شماره
صفحات -
تاریخ انتشار 2005